Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiang-Gao Meng,* Fu-Sheng Mei and Zhan-Ru Liao

Department of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
mengxianggao@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.068$
$w R$ factor $=0.160$
Data-to-parameter ratio $=8.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(benzimidazol-2-ylmethyl)amine tetrahydrate

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, the two independent molecules of the asymmetric unit are linked into a threedimensional structure by a combination of classical hydrogen bonds, $\mathrm{C}-\mathrm{H} \cdots \pi$ and aromatic $\pi-\pi$ interactions.

Comment

We have recently reported the centrosymmetric structure of (benzimidazol-3-ium-2-ylmethyl)(benzimidazol-2-ylmethyl)aminium sulfate, (I) (Meng et al., 2005). In an attempt to further study the influence of the solvent on the crystal structure of bis(benzimidazol-2-yl-methyl)amine (IDB), we report here the structure of the title compound, (II), crystallized from an aqueous solution under hydrothermal conditions.

Received 31 July 2006
Accepted 22 August 2006

(II)

In constrast to the related structures (I) and bis(benzimid-azol-2-ylmethyl)amine, (III) (Tarazon Navarro \& McKee, 2003), in which the dihedral angles between the benzimidazole

Figure 1
The asymmetric unit of (II), showing atom-labelling scheme and 50% probablity displacement ellipsoids.

Figure 2
Plot of the packing of (II), showing $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds as dashed lines. H atoms not involved in the hydrogen-bonding scheme have been omitted for clarity.
groups are less than 5.0°, in the two independent molecules comprising the asymmetric unit of (II) (Fig. 1), the comparable dihedral angles are 36.2 (1) and 39.8 (1) ${ }^{\circ}$. Apart from this, the bond lengths and angles present no unexpected values between the structures.

The supramolecular structures formed by (I) and (II) are both three-dimensional, but they are different not only in their detailed construction but also in the types of direction-specific intermolecular interactions in their crystal structures. In (I), there are intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, as well as aromatic $\pi-\pi$ interactions (Meng et al., 2005). In contrast, the molecules in (II) are linked into a threedimensional framework structure (Fig. 2) by a combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds (as detailed in Table 1) and aromatic $\pi-\pi$ interactions. The N1/C1/ $\mathrm{C} 6 / \mathrm{N} 2 / \mathrm{C} 7$ and ($\mathrm{C} 1-\mathrm{C} 6)^{\mathrm{i}}$ rings are almost parallel, with an interplanar spacing of approximately $3.28 \AA$ [symmetry code: (i) $-1+x, y, z]$; the ring-centroid separation is 3.631 (3) \AA.

Experimental

Bis(benzimidazol-2-yl-methyl)amine (IDB) was prepared according to the method described by Adams et al. (1990). IDB ($0.27 \mathrm{~g}, 1 \mathrm{mmol}$) and water $(10 \mathrm{ml})$ were sealed in a 25 ml stainless steel reactor with a Teflon liner. The reaction solution was heated at 393 K for 24 h . After slow cooling to room temperature, pale-yellow crystals were collected by filtration.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=349.39$
Orthorhombic, $P b c 2_{1}$
$a=4.7111(6) \AA$
$b=24.857(3) \AA$
$c=30.823(4) \AA$
$V=3609.5(8) \AA^{3}$

$Z=8$

$D_{x}=1.286 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, yellow
$0.40 \times 0.20 \times 0.06 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.963, T_{\max }=0.994$
Refinement
Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0776 P)^{2}\right. \\
& +1.7967 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.005 \\
& \Delta \rho_{\max }=0.33 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ is the centroid of the $\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 6 / \mathrm{N} 2 / \mathrm{C} 7$ ring and $C g 2$ is the centroid of the N6/C18/N7/C24/C19 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O} 6$	0.82	2.10	2.789 (7)	142
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 6$	0.83	2.49	2.795 (7)	103
$\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{O} 3$	0.83	2.18	2.895 (7)	145
$\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{~N} 8$	0.83	2.00	2.782 (7)	157
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 5$	0.83	2.16	2.788 (8)	133
$\mathrm{O} 4-\mathrm{H} 4 B \cdots \mathrm{~N} 1$	0.82	2.24	2.823 (7)	128
O5-H5B . . N10	0.83	2.04	2.853 (6)	169
O6- $\mathrm{H} 6 A \cdots \mathrm{O} 2$	0.82	2.01	2.795 (7)	159
O6-H6 $B \cdots \mathrm{O} 1$	0.82	1.97	2.789 (7)	176
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{~N} 2$	0.82	2.01	2.828 (6)	173
O8-H8C...N7	0.82	2.09	2.858 (6)	155
N1-H1.. O4	0.86	1.98	2.823 (7)	166
N4-H4C...O7	0.86	2.09	2.939 (6)	171
N5-H5A . . O_{2}	0.93	2.57	3.387 (7)	148
N6-H6 . . $\mathrm{O}^{\text {i }}$	0.86	2.02	2.875 (6)	175
N9 - H9. . O88	0.86	2.12	2.913 (6)	153
$\mathrm{N} 10-\mathrm{H} 10 \cdots \mathrm{O}$	0.84	2.40	2.853 (6)	114
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 6^{\text {ii }}$	0.83	2.01	2.823 (6)	169
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 4^{\text {iii }}$	0.82	2.09	2.807 (7)	145
O5-H5C ${ }^{\text {O }} \mathrm{O}^{\text {iv }}$	0.83	2.11	2.877 (7)	155
O7-H7A . . $\mathrm{O}^{\text {v }}$	0.83	2.09	2.903 (6)	168
$\mathrm{O} 8-\mathrm{H} 8 D \cdots \mathrm{O} 7^{\text {vi }}$	0.82	2.10	2.886 (6)	160
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{Cg} 1^{\text {iii }}$	0.97	2.85	3.545 (1)	129
$\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{Cg} 2^{\text {iii }}$	0.97	2.95	3.612 (1)	127

Symmetry codes: (i) $-x, y+\frac{1}{2}, z$; (ii) $x+1, y, z$; (iii) $x-1, y, z$; (iv) $-x+1, y+\frac{1}{2}, z$; (v) $x+1,-y+\frac{3}{2}, z+\frac{1}{2}$; (vi) $x,-y+\frac{3}{2}, z-\frac{1}{2}$.

The C -bound H atoms were included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The remaining H atoms were located in difference maps and their positions were fixed at their indicated separations, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{N})$ or $1.5 U_{\text {eq }}(\mathrm{O})$. In the absence of significant anomalous scattering effects, 3457 Friedel pairs were averaged in the final refinement.

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

This work was supported by the Key Fundamental Project (No. 2002CCA00500) and the National Natural Science Foundation of China (Nos. 29971012 and 29972014).

organic papers

References

Adams, H., Bailey, N. A., Carane, J. D. \& Fenton, D. E. (1990). J. Chem. Soc. Dalton Trans. pp. 1727-1735.
Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA

Meng, X.-G., Mei, F.-S. \& Liao, Z.-R. (2005). Acta Cryst. E61, $03047-03049$. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Sheldrick, G. M. (2001). SADABS. Version 2.10. Bruker AXS Inc., Madison Wisconsin, USA.
Tarazon Navarro, A. \& McKee, V. (2003). Acta Cryst. E59, o1199-o1201.

[^0]: © 2006 International Union of Crystallography All rights reserved

